In this example, you will see how to create your own custom plot of drill core data containing location, orientation, depth, and geotechnical data (lithography. fracture count, rock strength, weathering, and RMR).
A pressure pulse is being applied to the tunnel boundary with a frequency of 4 Hz over tens of milliseconds. Quiet (i.e., viscous) boundaries have been applied to all but the top of the model, which remains a free surface.
Numerical models are now used routinely to predict ground-water inflows to both surface and underground mines and to help design dewatering systems.
Lahars represent natural phenomena that can generate severe damage in densely populated urban areas. The evaluation of pressures generated by these mass flows on constructions (buildings, infrastructure…) is crucial for civil protection and assessment of physical vulnerability. The existing tools to model the spread of flows at large scale in densely populated urban areas remain inaccurate in the estimation of mechanical efforts. A discrete numerical model is developed for evaluating debris flow (DF) impact pressures at the local scale of one structure.
Identifying fractures in the subsurface is crucial for many geomechanical and hydrogeological applications. Here, we assess the ability of the Ground Penetrating Radar (GPR) method to image open fractures with sub-mm apertures in the context of future deep disposal of radioactive waste.